Variaciones geomorfológicas como condicionantes de la química del agua subterránea en el litoral del estuario medio del Río de la Plata

Autores/as

  • Marisol Melo Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata CONICET
  • Eleonora Carol Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata CONICET

DOI:

https://doi.org/10.24215/25456377e120

Palabras clave:

Hidrogeoquímica, Relaciones isotópicas e iónicas, Ambientes costeros,

Resumen

El objetivo del trabajo es determinar los cambios en la química del agua subterránea y los procesos geoquímicos asociados en función de las variaciones geomorfológicas en el ámbito de la planicie costera del Río de la Plata en el sector litoral del estuario medio. Para ello se estableció una red de monitoreo que involucra puntos de muestreo de agua superficial y subterránea donde se determinó el contenido de iones mayoritarios, nitrato e isótopos estables de la molécula de agua. El contenido en isótopos ambientales registra, para el caso del agua subterránea, que el agua de lluvia infiltra sin previa evaporación y recarga al agua subterránea somera. Las muestras de agua superficial presentan porcentajes de evaporación menores al 10%. Estos bajos porcentajes pueden deberse a que el muestreo se realizó en un mes de excesos hídricos. En cuanto al contenido de iones mayoritarios se registran variaciones en función de la geomorfología. Así, la antigua llanura intermareal y la planicie con cordones de conchilla presentan facies que varían según la profundidad del muestreo entre bicarbonatada sódica y clorurada sódica. Estas variaciones estarían controladas por la composición original del agua meteórica y las reacciones químicas producto de la interacción con el sedimento. Particularmente, la química del agua subterránea de la marisma está regulada por los flujos mareales provenientes del Río de la Plata.

Referencias

APHA -American Public Health Association (1998) Standard Methods for the Examination of Water and Wastewater. Washington, DC, American Public Health Association.

Canter, L.W. (1997) Nitrate in Groundwater, Boca Raton, CRC Press.

Carol, E., Kruse, E. & Mas-Pla, J. (2009) ?Hydrochemical and isotopical evidence of groundwater salinization processes on the coastal plain of Samborombón Bay, Argentina?, Journal of Hydrology 365, pp. 335-345. Disponible en https://doi.org/10.1016/j.jhydrol.2008.11.041.

Carol, E., Mas-Pla, J. & Kruse, E. (2013) ?Interaction between continental and estuarine waters in the wetlands of the northern coastal plain of Samborombón Bay, Argentina?, Applied Geochemistry 34, pp. 152-163. Disponible en http://doi.org/10.1016/j.apgeochem.2013.03.006.

Carol, E., García, L. & Borzi, G. (2015) ?Hydrogeochemistry and sustainability of freshwater lenses in the Samborombón Bay wetland, Argentina?, Journal of South American Earth Sciences 60, pp. 21-30. Disponible en http://doi.org/10.1016/j.jsames.2015.03.002.

Carol, E. & Kruse, E. (2016) ?Hydrochemical variability associated with rainfall regime: a case study in the coastal wetland of the outer Río de la Plata Estuary, Argentina?, Environmental Earth Sciences 75, pp. 1-11.

Cavallotto, J.L., Violante, R.A. & Colombo, F. (2005) ?Evolución y cambios ambientales de la llanura costera de la cabecera del Río de la Plata?, Revista de la Asociación Geológica Argentina 60, pp. 353-367.

Cellone, F., Carol, E. & Tosi, L. (2019) ?Groundwater geochemistry in coastal wetlands: A case study in the Parque Costero del Sur biosphere reserve, Argentina?, Catena 182, pp. 1-9. Disponible en https://doi.org/10.1016/j.catena.2019.104143.

Coleman, M.L., Shepherd, T.J., Durham, J.J., Rouse, J.E. y Moore, G.R.(1982) ?Reduction of water with zinc for hydrogen isotope analysis?, Analytical Chemistry 54, pp. 993-995.

Craig, H. & Gordon, L.I. (1965) ?Deuterium and oxygen 18 variations in the ocean and the marine atmosphere?, En Tongiorgi E. (ed.) Stable Isotopes in Oceanic Studies and Paleotemperatures, Pisa, Laboratorio di Geologia Nucleare, pp. 9-130.

Da Lio, C., Carol, E., Kruse, E., Teatini, P. & Tosi, L. (2015) ?Saltwater contamination in the managed low-lying farmland of the Venice coast, Italy: an assessment of vulnerability?, Science of the Total Environment 533, pp. 356-369. Disponible en https://doi.org/10.1016/j.scitotenv.2015.07.013.

Dapeña, C. & Panarello, H. (2004) ?Composición isotópica de la lluvia de Buenos Aires. Su importancia para el estudio de los sistemas hidrológicos pampeanos?, Revista Latinoamericana de Hidrogeología 4, pp. 17-25.

Gonfiantini, R. (1978) ?Standards for stable isotope measurements in natural compounds?, Nature 271, pp. 534.

Gonfiantini, R. (1986) ?Environmental isotopes in lake studies?, Handbook of Environmental Isotope Geochemistry, The Terrestria Environment 2, pp. 113-168.

Imbellone, P.A. & Giménez, J.E. (1997) ?Micromorphology of soils in quaternary littoral sequences. Northeastern Buenos Aires Province, Argentina?. En Shoba, S., Gerasimova, M., Miedema, R. (eds.) Soil Micromorphology: studies on Soil Diversity, Diagnostic and Dynamics, Moscú, Wageningen, pp. 93-105.

Lis, G., Wassenaar, L.I. & Hendry, M.J. (2008) ?High-precision laser spectroscopy D/H y 18O/16O measurements of microliter natural water samples?, Analytical chemistry 80, pp. 287-293.

Melo, M. (2019) Geohidrología de la planicie costera del Río de la Plata medio, partido de Magdalena, Tesis doctoral inédita, La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata.

Panarello, H.O. & Parica, C.A. (1984) ?Isótopos del oxígeno en hidrogeología e hidrología. Primeros valores en aguas de lluvia de Buenos Aires?, Revista de la Asociación Geológica Argentina 39, pp. 3-11.

Santucci, L., Sanci, R., Carol, E., Villalba, E. & Panarello, H. (2019) ?Using H, O, Rn isotopes and hydrometric parameters to assess the surface water-groundwater interaction in coastal wetlands associated to the marginal forest of the Río de la Plata?, Continental Shelf Research 186, pp. 104-110. Disponible en https://doi.org/10.1016/j.csr.2019.08.002.

Simler, R. (2009) Diagrammes. Avignon, Laboratoire d'Hydrogéologie d'Avignon. http://www.lha.univavignon.fr/LHA-Logiciels.htm

Tanjal, C., Carol, E.S., Richiano, S. & Santucci, L. (2017) ?Freshwater lenses as ecological and population sustenance, case study in the coastal wetland of Samborombón Bay (Argentina)?, Marine Pollution Bulletin 122, pp. 426-431. Disponible en https://doi.org/10.1016/j.marpolbul.2017.05.050.

Vazquez-Suñe, E. & Serrano-Juan, A. (2012) Easy Quim v5.0. Grupo de Hidrología Subterránea. Disponible en https://h2ogeo.upc.edu/.

Violante, R.A., Parker, G. & Cavallotto, J. (2001) ?Evolución de las llanuras costeras del este bonaerense entre la bahía Samborombón y la laguna Mar Chiquita durante el Holoceno?, Revista de la Asociación Geológica Argentina 56, pp. 51-66.

Zabala, M.E., Martínez, S., Manzano, M., & Vives, L. (2016) ?Groundwater chemical baseline values to assess the recovery plan in the Matanza-Riachuelo River basin, Argentina?, Science of the Total Environment 541, pp. 1516-1530.

Descargas

Publicado

2020-08-29

Número

Sección

Dossier