Simulación computacional de defectos estructurales formados durante la deshidroxilación de la caolinita

Autores/as

  • Iván Aitor Polcowñuk Iriarte Centro de Tecnología de Recursos Minerales y Cerámica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata
  • Nicolás M. Rendtorff CETMIC, Universidad Nacional de La Plata
  • Diego Richard Centro de Tecnología de Recursos Minerales y Cerámica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata; Consejo Nacional de Investigaciones Científicas y Técnicas

DOI:

https://doi.org/10.24215/25456377e184

Palabras clave:

Caolín, Metacaolín, Simulaciones, Vacancias, Cálculos de primeros principios,

Resumen

La importancia de la caolinita en el desarrollo de la ciencia cerámica moderna se puede apreciar al observar su amplia influencia en la cerámica, la ciencia de los materiales y la mineralogía. Dado que, en general, su uso en la industria requiere de tratamientos térmicos, resulta de interés comprender la formación del metacaolín durante la activación térmica de esta arcilla y desentrañar los mecanismos físicos y químicos involucrados en su producción. En este trabajo se estudia el inicio del proceso de deshidroxilación utilizando métodos de cálculo basados en la Teoría de la Funcional Densidad. En particular, se proponen cuatro sistemas que combinan vacancias de un grupo OH y un átomo H de la celda unidad de la caolinita. Para cada una de estas variantes se optimizó la estructura, y se analizó la energía del sistema luego de la optimización. Los resultados fueron comparados entre sí y con la literatura. Por último, para el caso más compatible con el inicio del proceso físico de deshidroxilación se estudió la densidad de estados electrónicos y se la comparó con la correspondiente a la caolinita. Los resultados obtenidos contribuyen a indagar entre distintos sistemas modelo que podrían describir el inicio del proceso de producción del metacaolín, como así también a entender las diferencias existentes entre los mismos.

Referencias

Andrini, L., Gauna, M.R., Conconi, M.S., Suárez, G., Requejo, F.G.,

Aglietti, E.F. & Rendtorff, N.M. (2016) ?Extended and local structural description of a kaolinitic clay, its fired ceramics and intermediates: An XRD and XANES analysis?, Applied Clay Science, 124-125, pp. 39-45. http://dx.doi.org/10.1016/j.clay.2016.01.049.

Bellotto, M., Gualtieri, A., Artioli, G. & Clark, S.M. (1995) ?Kinetic study of the kaolinite-mullite reaction sequence. Part I: kaolinite dehydroxylation?, Physics and Chemistry of Minerals, 22, pp. 207-217. https://doi.org/10.1007/BF00202253.

Brindley, G.W. & Nakahira, M. (1957) ?The Kaolinite-Mullite Reaction Series: II, Metakaolin?, Journal of the American Ceramic Society, 42(7), pp. 314-318. https://doi.org/10.1111/j.1151-2916.1959.tb14315.x,

Cao, C., Wang, Y., Zhang, Z., Ma, Y. & Wang, H. (2021) ?Recent progress of utilization of activated kaolinitic clay in cementitious construction materials?, Composites Part B: Engineering, 211, 108636. https://doi.org/10.1016/j.compositesb.2021.108636.

Chen, J., Min, F., Liu, L. & Cai, C. (2020) ?Systematic exploration of the interactions between Fe-doped kaolinite and coal based on DFT calculations?, Fuel, 266, 117082. https://doi.org/10.1016/j.fuel.2020.117082.

Conconi, M.S., Morosi, M., Maggi, J., Zalba, P.E., Cravero, F. & Rendtorff, N.M. (2019) ?Thermal behavior (TG-DTA-TMA), sintering and properties of a kaolinitic clay from Buenos Aires Province, Argentina?, Cerâmica, 65, pp. 227-235. https://doi.org/10.1590/0366-69132019653742621.

Dal Corso, A. (2014) ?Pseudopotentials periodic table: from H to Pu?, Computational Materials Science, 95, pp. 337-350. https://doi.org/10.1016/j.commatsci.2014.07.043.

Dill, H.G. (2016) ?Kaolin: Soil, rock and ore: From the mineral to the magmatic, sedimentary and metamorphic environments?, Earth-Science Reviews, 161, pp. 16-129. https://doi.org/10.1016/j.earscirev.2016.07.003

Domínguez, E., Dondi, M., Etcheverry, R., Recio, C. & Iglesias, C. (2016) ?Genesis and mining potential of kaolin deposits in Patagonia (Argentina)?, Applied Clay Science, 131, pp. 44-47. https://doi.org/10.1016/j.clay.2015.12.031.

Drits, V.A., Sakharov, B.A., Dorzhieva, O.V. & Zviagina, B.B. (2019) ?Determination of the phase composition of partially dehydroxylated kaolinites by modelling their X-ray diffraction patterns?, Clay Minerals, 54(3), pp. 309-322. https://doi.org/10.1180/clm.2019.39.

Gasparini, E., Tarantino, S. C., Ghigna, P., Riccardi, M.P., Cedillo-González, E.I., Siligardi, C. & Zema, M. (2013) ?Thermal dehydroxylation of kaolinite under isothermal conditions?, Applied Clay Science, 80-81, pp. 417-425. http://dx.doi.org/10.1016/j.clay.2013.07.017.

Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, a., de Gironcoli, S., Delugas, P., DiStasio Jr., R.A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.-Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N.L., Nguyen, H.-V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A.P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X. & Baroni, S. (2017) ?Advanced capabilities for materials modelling with Quantum ESPRESSO?, Journal of Physics: Condensed Matter, 29(46), pp. 465901. https://doi.org/10.1088/1361-648X/aa8f79.

Gillespie, S.D. (2001) ?Clay: The entanglement of Earth in the age of clay?. En: Krzys Acord S., Jones, K. S., Bryant, M., Dauphin-Jones, D., and Hupp, P. (eds.) Impact of Materials on Society, Pressbooks, Florida, USA, pp. 15-43. ISBN: 978-1-944455-14-9

Hanein, T., Thienel, K.C., Zunino, F., Marsh, A.T.M., Maier, M., Wang, B., Canut, M., Juenger, M.C.G., Haha, M.B., Avet, F., Parashar, A., Al-Jaberi, L.A., Almenares-Reyes, R.S., Alujas-Diaz, A., Scrivener, K.L., Bernal, S.A., Provis, J.L., Sui, T., Bishnoi S. & Martirena-Hernández, F. (2022) ?Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL?, Materials and Structures, 55(3), pp. 1-29. https://doi.org/10.1617/s11527-021-01807-6.

Hamilton, A. (2012) ?A Review of Rehydroxylation in Fired-Clay Ceramics?, Journal of the American Ceramic Society, 95(9), pp. 2673-2678. https://doi.org/10.1111/j.1551-2916.2012.05298.x.

Hirsch, T.K. & Ojamäe, L. (2004) ?Quantum-chemical and force-field investigations of ice Ih: computation of proton-ordered structures and prediction of their lattice energies?, The Journal of Physical Chemistry B, 108(40), pp. 15856-15864. https://doi.org/10.1021/jp048434u.

Irassar, E.F., Tironi, A., Bonavetti, V.L., Trezza, M.A., Castellano, C.C., Rahhal, V.F., Donza, H.A., & Scian, A.N. (2019) ?Thermal treatment and pozzolanic activity of calcined clay and shale?, ACI Materials Journal, 116(4), pp. 133-143. https://doi.org/10.14359/51716717.

Izadifar, M., Thissen, P., Steudel, A., Kleeberg, R., Kaufhold, S.,

Kaltenbach, J., Schuhmann, R., Dehn, F. & Emmerich, K. (2020) ?Comprehensive examination of dehydroxylation of kaolinite, disordered kaolinite, and dickite: experimental studies and density functional theory?, Clays and Clay Minerals, 68, pp. 319-333. https://doi.org/10.1007/s42860-020-00082-w.

Izadifar et al. (2022)

Jones, R.O. (2015) ?Density functional theory: Its origins, rise to prominence, and future?, Review of Modern Physics, 87, p. 897. https://doi.org/10.1103/RevModPhys.87.897.

Krausmann, F., Lauk, C., Haas, W. & Wiedenhofer, D. (2018) ?From resource extraction to outflows of wastes and emissions: The socioeconomic metabolism of the global economy, 1900?2015?, Global Environmental Change, 52, pp. 131-140. https://doi.org/10.1016/j.gloenvcha.2018.07.003.

Lee, S., Kim, Y.J. & Moon, H.-S. (2003) ?Energy-Filtering Transmission Electron Microscopy (EF-TEM) study of a modulated structure in metakaolinite, represented by a 14 Ã? modulation?, Journal of the American Ceramic Society, 86(1), pp. 174-176. https://doi.org/10.1111/j.1151-2916.2003.tb03297.x.

Marzari, N., Ferretti, A. & Wolverton, C. (2021) ?Electronic-structure methods for materials design?, Nature materials, 20, pp. 736-749. https://doi.org/10.1038/s41563-021-01013-3.

MacKenzie, K.J.D., Brown, I.W.M., Meinhold, R.H. & Bowden, M.E. (1985) ?Outstanding problems in the kaolinite-mullite reaction sequence investigated by 29Si and 27Al Solid-state Nuclear Magnetic Resonance: I, metakaolinite?, Journal of the American Ceramic Society, 68(6), pp. 293 - 297. http://dx.doi.org/10.1111/j.1151-2916.1985.tb15228.x.

Nisar, J., Ã?rhammar, C., Jämstorp, E. & Ahuja, R. (2011) ?Optical gap and native point defects in kaolinite studied by the GGA-PBE, HSE functional, and GW approaches?, Physical Review B, 84, pp. 075120. https://doi.org/10.1103/PhysRevB.84.075120.

Ptá?ek, P., Frajkorová, F., ?oukal, F. & Opravil, T. (2014) ?Kinetics and mechanism of three stages of thermal transformation of kaolinite to metakaolinite?, Powder Technology, 264, pp. 439-445. http://dx.doi.org/10.1016/j.powtec.2014.05.047.

Richard, D. & Rendtorff, N.M. (2019) ?First principles study of structural properties and electric field gradients in kaolinite?, Applied Clay Science, 169, pp. 67-73. https://doi.org/10.1016/j.clay.2018.12.013,

Richard, D., Martínez, J.M., Mizrahi, M., Andrini, L. & Rendtorff, N.M. (2022) ?Assessment of structural order indices in kaolinites: A multi-technique study including EXAFS?, Journal of Electron Spectroscopy and Related Phenomena, 254, pp. 147128. https://doi.org/10.1016/j.elspec.2021.147128.

Schroeder, P.A. & Erickson, G. (2014) ?Kaolin: from ancient porcelains to nanocomposites?, Elements, 10(3), pp. 177-182. https://doi.org/10.2113/gselements.10.3.177

Wang, F., Kovler, K., Provis, J.L., Buchwald, A., Cyr, M., Patapy, C.,

Kamali-Bernard, S., Courard, L & Sideris, K. (2017) ?Metakaolin?, Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials, pp. 153?179. https://doi.org/10.1007/978-3-319-70606-1_5.

Welch, M.D. & Crichton, W.A. (2010) ?Pressure-induced transformations in kaolinite?, American Mineralogist, 95, pp. 651-654. https://doi.org/10.2138/am.2010.3408.

White, C.E., Provis, J.L., Riley, D.P., Kearly, G.J. & van Deventer, J.S.J. (2009) ?What is the structure of kaolinite? reconciling theory and experiment?, The Journal of Physical Chemistry B, 113(19), pp. 6756-6765. https://doi.org/10.1021/jp810448t.

White, C.E., Provis, J.L., Proffen, T., Riley, ¿? & van Deventer, J.S.J. (2010) ?Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation?, The Journal of Physical Chemistry A, 114(14), pp. 4988-4996. https://doi.org/10.1021/jp911108d.

Wu, Z. & Cohen, R.E. (2006) ?More accurate generalized gradient approximation for solids?, Physical Review B, 73, pp. 235116. https://doi.org/10.1103/PhysRevB.73.235116.

Xu, X. & Goddard, W.A. (2004) ?Bonding properties of the water dimer: a comparative study of density functional theories?, The Journal of Physical Chemistry A, 108(12), pp. 2305-2313. https://doi.org/10.1021/jp035869t.

Zeng, Q., Xie, J., Zhou, W., Zhu, J., Liu, L., Yin, J. & Zhu, W. (2022) ?Study of the crystallographic distortion mechanism during the annealing of kaolinite?, Minerals, 12, pp. 994. https://doi.org/10.3390/min12080994.

Descargas

Publicado

2023-12-30

Número

Sección

Dossier