Simulação computacional de defeitos estruturais formados durante a desidroxilação da caulinita

Autores

  • Iván Aitor Polcowñuk Iriarte Centro de Tecnología de Recursos Minerales y Cerámica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata
  • Nicolás M. Rendtorff CETMIC, Universidad Nacional de La Plata
  • Diego Richard Centro de Tecnología de Recursos Minerales y Cerámica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata; Consejo Nacional de Investigaciones Científicas y Técnicas

DOI:

https://doi.org/10.24215/25456377e184

Palavras-chave:

Caulim, Metacaulim, Simulações, Vagas, Cálculos de primeiros princípios,

Resumo

A importância da caulinita no desenvolvimento da ciência cerâmica moderna pode ser apreciada observando-se sua ampla influência na cerâmica, na ciência dos materiais e na mineralogia. Dado que, em geral, a sua utilização na indústria requer tratamentos térmicos, é de interesse compreender a formação do metacaulim durante a ativação térmica desta argila e desvendar os mecanismos físicos e químicos envolvidos na sua produção. Neste trabalho estuda-se o início do processo de desidroxilação utilizando métodos de cálculo baseados na Teoria do Funcional da Densidade. Em particular, são propostos quatro sistemas que combinam vacância de um grupo OH e um átomo de H da célula unitária da caulinita. Para cada uma dessas variantes a estrutura foi otimizada e a energia do sistema após a otimização foi analisada. Os resultados foram comparados entre si e com a literatura. Por fim, para o caso mais compatível com o início do processo físico de desidroxilação, a densidade dos estados eletrônicos foi estudada e comparada com aquela correspondente à caulinita. Os resultados obtidos contribuem para a investigação de diferentes sistemas modelo que poderiam descrever o início do processo de produção do metacaulim, bem como para a compreender as diferenças existentes entre eles.

Referências

Andrini, L., Gauna, M.R., Conconi, M.S., Suárez, G., Requejo, F.G.,

Aglietti, E.F. & Rendtorff, N.M. (2016) ?Extended and local structural description of a kaolinitic clay, its fired ceramics and intermediates: An XRD and XANES analysis?, Applied Clay Science, 124-125, pp. 39-45. http://dx.doi.org/10.1016/j.clay.2016.01.049.

Bellotto, M., Gualtieri, A., Artioli, G. & Clark, S.M. (1995) ?Kinetic study of the kaolinite-mullite reaction sequence. Part I: kaolinite dehydroxylation?, Physics and Chemistry of Minerals, 22, pp. 207-217. https://doi.org/10.1007/BF00202253.

Brindley, G.W. & Nakahira, M. (1957) ?The Kaolinite-Mullite Reaction Series: II, Metakaolin?, Journal of the American Ceramic Society, 42(7), pp. 314-318. https://doi.org/10.1111/j.1151-2916.1959.tb14315.x,

Cao, C., Wang, Y., Zhang, Z., Ma, Y. & Wang, H. (2021) ?Recent progress of utilization of activated kaolinitic clay in cementitious construction materials?, Composites Part B: Engineering, 211, 108636. https://doi.org/10.1016/j.compositesb.2021.108636.

Chen, J., Min, F., Liu, L. & Cai, C. (2020) ?Systematic exploration of the interactions between Fe-doped kaolinite and coal based on DFT calculations?, Fuel, 266, 117082. https://doi.org/10.1016/j.fuel.2020.117082.

Conconi, M.S., Morosi, M., Maggi, J., Zalba, P.E., Cravero, F. & Rendtorff, N.M. (2019) ?Thermal behavior (TG-DTA-TMA), sintering and properties of a kaolinitic clay from Buenos Aires Province, Argentina?, Cerâmica, 65, pp. 227-235. https://doi.org/10.1590/0366-69132019653742621.

Dal Corso, A. (2014) ?Pseudopotentials periodic table: from H to Pu?, Computational Materials Science, 95, pp. 337-350. https://doi.org/10.1016/j.commatsci.2014.07.043.

Dill, H.G. (2016) ?Kaolin: Soil, rock and ore: From the mineral to the magmatic, sedimentary and metamorphic environments?, Earth-Science Reviews, 161, pp. 16-129. https://doi.org/10.1016/j.earscirev.2016.07.003

Domínguez, E., Dondi, M., Etcheverry, R., Recio, C. & Iglesias, C. (2016) ?Genesis and mining potential of kaolin deposits in Patagonia (Argentina)?, Applied Clay Science, 131, pp. 44-47. https://doi.org/10.1016/j.clay.2015.12.031.

Drits, V.A., Sakharov, B.A., Dorzhieva, O.V. & Zviagina, B.B. (2019) ?Determination of the phase composition of partially dehydroxylated kaolinites by modelling their X-ray diffraction patterns?, Clay Minerals, 54(3), pp. 309-322. https://doi.org/10.1180/clm.2019.39.

Gasparini, E., Tarantino, S. C., Ghigna, P., Riccardi, M.P., Cedillo-González, E.I., Siligardi, C. & Zema, M. (2013) ?Thermal dehydroxylation of kaolinite under isothermal conditions?, Applied Clay Science, 80-81, pp. 417-425. http://dx.doi.org/10.1016/j.clay.2013.07.017.

Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, a., de Gironcoli, S., Delugas, P., DiStasio Jr., R.A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.-Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N.L., Nguyen, H.-V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A.P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X. & Baroni, S. (2017) ?Advanced capabilities for materials modelling with Quantum ESPRESSO?, Journal of Physics: Condensed Matter, 29(46), pp. 465901. https://doi.org/10.1088/1361-648X/aa8f79.

Gillespie, S.D. (2001) ?Clay: The entanglement of Earth in the age of clay?. En: Krzys Acord S., Jones, K. S., Bryant, M., Dauphin-Jones, D., and Hupp, P. (eds.) Impact of Materials on Society, Pressbooks, Florida, USA, pp. 15-43. ISBN: 978-1-944455-14-9

Hanein, T., Thienel, K.C., Zunino, F., Marsh, A.T.M., Maier, M., Wang, B., Canut, M., Juenger, M.C.G., Haha, M.B., Avet, F., Parashar, A., Al-Jaberi, L.A., Almenares-Reyes, R.S., Alujas-Diaz, A., Scrivener, K.L., Bernal, S.A., Provis, J.L., Sui, T., Bishnoi S. & Martirena-Hernández, F. (2022) ?Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL?, Materials and Structures, 55(3), pp. 1-29. https://doi.org/10.1617/s11527-021-01807-6.

Hamilton, A. (2012) ?A Review of Rehydroxylation in Fired-Clay Ceramics?, Journal of the American Ceramic Society, 95(9), pp. 2673-2678. https://doi.org/10.1111/j.1551-2916.2012.05298.x.

Hirsch, T.K. & Ojamäe, L. (2004) ?Quantum-chemical and force-field investigations of ice Ih: computation of proton-ordered structures and prediction of their lattice energies?, The Journal of Physical Chemistry B, 108(40), pp. 15856-15864. https://doi.org/10.1021/jp048434u.

Irassar, E.F., Tironi, A., Bonavetti, V.L., Trezza, M.A., Castellano, C.C., Rahhal, V.F., Donza, H.A., & Scian, A.N. (2019) ?Thermal treatment and pozzolanic activity of calcined clay and shale?, ACI Materials Journal, 116(4), pp. 133-143. https://doi.org/10.14359/51716717.

Izadifar, M., Thissen, P., Steudel, A., Kleeberg, R., Kaufhold, S.,

Kaltenbach, J., Schuhmann, R., Dehn, F. & Emmerich, K. (2020) ?Comprehensive examination of dehydroxylation of kaolinite, disordered kaolinite, and dickite: experimental studies and density functional theory?, Clays and Clay Minerals, 68, pp. 319-333. https://doi.org/10.1007/s42860-020-00082-w.

Izadifar et al. (2022)

Jones, R.O. (2015) ?Density functional theory: Its origins, rise to prominence, and future?, Review of Modern Physics, 87, p. 897. https://doi.org/10.1103/RevModPhys.87.897.

Krausmann, F., Lauk, C., Haas, W. & Wiedenhofer, D. (2018) ?From resource extraction to outflows of wastes and emissions: The socioeconomic metabolism of the global economy, 1900?2015?, Global Environmental Change, 52, pp. 131-140. https://doi.org/10.1016/j.gloenvcha.2018.07.003.

Lee, S., Kim, Y.J. & Moon, H.-S. (2003) ?Energy-Filtering Transmission Electron Microscopy (EF-TEM) study of a modulated structure in metakaolinite, represented by a 14 Ã? modulation?, Journal of the American Ceramic Society, 86(1), pp. 174-176. https://doi.org/10.1111/j.1151-2916.2003.tb03297.x.

Marzari, N., Ferretti, A. & Wolverton, C. (2021) ?Electronic-structure methods for materials design?, Nature materials, 20, pp. 736-749. https://doi.org/10.1038/s41563-021-01013-3.

MacKenzie, K.J.D., Brown, I.W.M., Meinhold, R.H. & Bowden, M.E. (1985) ?Outstanding problems in the kaolinite-mullite reaction sequence investigated by 29Si and 27Al Solid-state Nuclear Magnetic Resonance: I, metakaolinite?, Journal of the American Ceramic Society, 68(6), pp. 293 - 297. http://dx.doi.org/10.1111/j.1151-2916.1985.tb15228.x.

Nisar, J., Ã?rhammar, C., Jämstorp, E. & Ahuja, R. (2011) ?Optical gap and native point defects in kaolinite studied by the GGA-PBE, HSE functional, and GW approaches?, Physical Review B, 84, pp. 075120. https://doi.org/10.1103/PhysRevB.84.075120.

Ptá?ek, P., Frajkorová, F., ?oukal, F. & Opravil, T. (2014) ?Kinetics and mechanism of three stages of thermal transformation of kaolinite to metakaolinite?, Powder Technology, 264, pp. 439-445. http://dx.doi.org/10.1016/j.powtec.2014.05.047.

Richard, D. & Rendtorff, N.M. (2019) ?First principles study of structural properties and electric field gradients in kaolinite?, Applied Clay Science, 169, pp. 67-73. https://doi.org/10.1016/j.clay.2018.12.013,

Richard, D., Martínez, J.M., Mizrahi, M., Andrini, L. & Rendtorff, N.M. (2022) ?Assessment of structural order indices in kaolinites: A multi-technique study including EXAFS?, Journal of Electron Spectroscopy and Related Phenomena, 254, pp. 147128. https://doi.org/10.1016/j.elspec.2021.147128.

Schroeder, P.A. & Erickson, G. (2014) ?Kaolin: from ancient porcelains to nanocomposites?, Elements, 10(3), pp. 177-182. https://doi.org/10.2113/gselements.10.3.177

Wang, F., Kovler, K., Provis, J.L., Buchwald, A., Cyr, M., Patapy, C.,

Kamali-Bernard, S., Courard, L & Sideris, K. (2017) ?Metakaolin?, Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials, pp. 153?179. https://doi.org/10.1007/978-3-319-70606-1_5.

Welch, M.D. & Crichton, W.A. (2010) ?Pressure-induced transformations in kaolinite?, American Mineralogist, 95, pp. 651-654. https://doi.org/10.2138/am.2010.3408.

White, C.E., Provis, J.L., Riley, D.P., Kearly, G.J. & van Deventer, J.S.J. (2009) ?What is the structure of kaolinite? reconciling theory and experiment?, The Journal of Physical Chemistry B, 113(19), pp. 6756-6765. https://doi.org/10.1021/jp810448t.

White, C.E., Provis, J.L., Proffen, T., Riley, ¿? & van Deventer, J.S.J. (2010) ?Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation?, The Journal of Physical Chemistry A, 114(14), pp. 4988-4996. https://doi.org/10.1021/jp911108d.

Wu, Z. & Cohen, R.E. (2006) ?More accurate generalized gradient approximation for solids?, Physical Review B, 73, pp. 235116. https://doi.org/10.1103/PhysRevB.73.235116.

Xu, X. & Goddard, W.A. (2004) ?Bonding properties of the water dimer: a comparative study of density functional theories?, The Journal of Physical Chemistry A, 108(12), pp. 2305-2313. https://doi.org/10.1021/jp035869t.

Zeng, Q., Xie, J., Zhou, W., Zhu, J., Liu, L., Yin, J. & Zhu, W. (2022) ?Study of the crystallographic distortion mechanism during the annealing of kaolinite?, Minerals, 12, pp. 994. https://doi.org/10.3390/min12080994.

Publicado

2023-12-30

Edição

Seção

Dossier