Geohydrology of a sector of the Bahía San Blas marsh

Authors

  • Lucas Misseri Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC)
  • Francisco, A. Cellone Centro de Investigaciones Geológicas (CIG)
  • Pablo, J. Bouza IPEEC-CENPAT-CONICET
  • María del Pilar Alvarez IPEEC-CENPAT-CONICET
  • Eleonora, S. Carol CIG-CONICET-UNLP

DOI:

https://doi.org/10.24215/25456377e122

Keywords:

Coastal wetland, Coastal geomorphology, Hydrogeochemistry,

Abstract

The marsh of the Jabalí stream lies within the Reserva Natural Provincial de Uso Múltiple Bahía San Blas and is located in the southeast of Buenos Aires province, Argentina. The aim of the work is to analyze the main geohydrological processes that regulate the chemistry of groundwater and surface waters in this wetland, and the link of these chemical characteristics to local geomorphological and pedological features. For this purpose, a geomorphological characterization was performed and used as basis for establishing a surface and groundwater monitoring network. Fourteen phreatimeters were built along 3 transects perpendicular to the stream; the water samples collected were analyzed in situ for pH, electrical conductivity, temperature and dissolved oxygen, while major ion contents were determined in the laboratory. The data were analyzed through diagrams of ionic relationships and water classification diagrams. In each sector, soil pits were dug for the description of soil profiles and textural characteristics of the surface sediments. Results show that the chemistry of both the water from the Jabalí channel and the marsh groundwater are predominantly sodium chlorinated, with an enrichment of ionic content associated to greater distance to the mouth of the channel and more elevated topographic position. The main processes that condition groundwater chemistry are the dissolution of mineral species such as halite, gypsum and carbonates that occur as surface crusts on the soil, resulting from the total or partial evaporation of seawater and their subsequent incorporation into the aquifer through infiltration. These processes are facilitated by the semi-arid climate, the lower recurrence of flooding due to the high topographic position, and the fine texture of the soils. In turn, the oxidation of paedogenetic sulphides and the consequent acidification of the medium are proposed as additional mechanisms that condition water chemistry

Author Biographies

  • Lucas Misseri, Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC)
    Becario doctoral de la Agencia Nacional de Promoción Científica y Técnica (ANPCyT) en el IPEEC-CENPAT
  • Francisco, A. Cellone, Centro de Investigaciones Geológicas (CIG)
    Becario Posdoctoral
  • Pablo, J. Bouza, IPEEC-CENPAT-CONICET
    Invstigador Principal en CONICET
  • María del Pilar Alvarez, IPEEC-CENPAT-CONICET
    Investigadora Adjunta en CONICET
  • Eleonora, S. Carol, CIG-CONICET-UNLP
    Investigadora Independiente en CONICET

References

Alvarez, M.P., Carol, E., Hernández, M.A. & Bouza, P. (2016) ?Groundwater dynamic, temperature and salinity response to the tide in Patagonian marshes: Observations on a coastal wetland in San José Gulf, Argentina?, Journal of South American Earth Sciences 62, pp. 1-11.

APHA (1998) Standard Methods for the Examination of Water and Waste Water, 20th ed., Washington American Public Health Association.

Boettinger, J.L. & Richardson, J.L. (2001) ?Saline and Wet Soils of Wetlands in Dry Climates?. En: Richardson, J.L. & Vepraskas, M.J. (Eds). Wetland Soils. Genesis, Hydrology, Landscapes, and Classification. Lewis Publishers, Washington, D.C., pp 398-390.

Bouza, P.J., Ríos, I., Idaszkin, Y.L. & Bortolus, A. (2019) ?Patagonian salt marsh soils and oxidizable pedogenic pyrite: solid phases controlling aluminum and iron contents in acidic soil solutions?, Environmental Earth Sciences 78(1), p. 2.

Brinson, M.M. (1989) ?Fringe wetlands in Albemarle and Pamlico sounds: landscape position, fringe swamp structure, and response to rising sea level?, Project No. 8814, Albemarle Pamlico Estuarine Study, Raleigh.

Brinson, M.M. & Malvárez, A.I. (2002) ?Temperate freshwater wetlands: types status, and threats?, Environ. Conserv. 29, pp. 115-133.

Carol, E.S., Kruse, E.E., Pousa, J.L. & Roig, A.R. (2009) ?Determination of heterogeneities in the hydraulic properties of a phreatic aquifer from tidal level fluctuations: a case in Argentina?, Hydrogeology Journal 17(7), p. 1727.

Carol, E., Mas Pla, J. & Kruse, E. (2013) ?Interaction between continental and estuarine waters in the wetlands of the northern coastal plain of Samborombón Bay, Argentina?, Appl. Geochem. Disponible en: http://dx.doi.org/10.1016/j.apgeochem.2013.03.006.

Carol, E., Bragab, F., Donnicib, S., Kruse, E. & Tosi, L. (2017) ?The hydrologic landscape of the Ajó coastal plain, Argentina: An assessment of human-induced changes?, Antropocene 18, pp. 1-14.

Cellone, F., Carol, E. & Tosi, L. (2019) ?Groundwater geochemistry in coastal wetlands: A case study in the Parque Costero del Sur biosphere reserve, Argentina?, Catena 182, pp. 1-9.

Chapman, V.J. (1960) Salt marshes and salt deserts of the world, Leonard Hill, London.

Fucks, E., Charó, M. & Pisano, F. (2012) ?Aspectos estratigráficos y geomorfológicos del sector oriental patagónico bonaerense?, Revista de la Sociedad Geológica de España 25(1-2), pp. 29-44.

Herrero, J. & Castañeda, C. (2015) ?Temporal changes in soil salinity at four saline wetlands in NE Spain?, Catena 133, pp. 145-156.

Isacch, J.P., Costa, C.S.B., Rodríguez-Gallego, L., Conde, D.; Escapa,

M., Gagliardini, D.A. & Iribarne, O.O. (2006) ?Distribution of Salt marsh plant communities associated with environmental factors along a latitudinal gradient on the southwest Atlantic coast?, Journal of Biogeography 33, pp. 888?900.

Logan, W. & Nicholson, R. (1998) ?Origin of dissolved groundwater sulphate in coastal plain sediments of the Rio de la Plata, Eastern Argentina?, Aquatic-Geochemistry 3, pp. 305-328.

Marimuthu, S., Reynolds, D.A. & La Salle, C.L.G. (2005) ?A field study of hydraulic, geochemical and stable isotope relationships in a coastal wetlands system?, Journal of Hydrology 315(1-4), pp. 93-116. Disponible en: https://doi.org/10.1016/j.jhydrol.2005.03.041.

Ritchey, E.L., McGrath, J.M. & Gehring, D. (2015) ?Determining Soil Texture by Feel?, Agriculture and Natural Resources Publications, p. 139. Disponible en: https://uknowledge.uky.edu/anr_reports/139.

Schoeneberger, P.J., Wysocki, D.A. & Benham, E.C. (2012) Soil Survey Staff. Field Book for Describing and Sampling Soils, Versión 3.0, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.

Servicio de Hidrografía Naval (2019) Datos abiertos ? Tablas de marea. Disponible en: http://www.hidro.gov.ar /oceanografia/Tmareas/Form_Tmareas.asp (Visitado 9 de diciembre 2019).

Simler, R. (2009) Diagrammes: Logiciel d'hydrochimie multilangage en distribution libre (Versión 6.59), Laboratoire d'Hydrogéologie d'Avignon.

Vepraskas, M.J., Wildings, L.P. & Dress, L.R. (1994) ?Aquic conditions for soil taxonomy: concepts, soil morphology and micromorphology?. En: Ringrose-Voace, Humphreys, G.S. (eds.) Soil micromorphology: studies in management and genesis, development in soil science 22, Elsevier, Amsterdam, pp. 117-131.

Wilson, A.M. & Morris, J.T. (2012) ?The influence of tidal forcing on groundwater flow and nutrient exchange in a salt marsh dominated estuary?, Biogeochemistry 108(1-3), pp. 27-38. Disponible en: https://doi:10.1007/s105330109570y.

Downloads

Published

2020-08-29

Issue

Section

Dossier